Abstract

Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth's surface and their interactions with vegetation and atmosphere. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. They are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We here present an ‘Emulator toolbox’ that enables analyzing three multi-output machine learning regression algorithms (MO-MLRAs) on their ability to approximate an RTM. As a proof of concept, a case study on emulating sun-induced fluorescence (SIF) is presented. The toolbox is foreseen to open new opportunities in the use of advanced RTMs, in which both consistent physical assumptions and data-driven machine learning algorithms live together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.