Abstract

The effects of feeding an 80% plant protein diet, with and without fish protein hydrolysate (FPH) supplementation, on the growth and gut health of Atlantic salmon were investigated. Fish were fed either (A) a control diet containing 35% fishmeal, (B) an 80% plant protein diet with 15% fishmeal, (C) an 80% plant protein diet with 5% fishmeal and 10% partly hydrolysed protein, or (D) an 80% plant protein diet with 5% fishmeal and 10% soluble protein hydrolysate. Fish on the 80% plant- 15% fishmeal diet were significantly smaller than fish in the other dietary groups. However, partly-hydrolysed protein supplementation allowed fish to grow as well as fish fed the control 35% fishmeal diet. Fish fed the FPH diets (diets C and D) had significantly higher levels of amino acids in their blood, including 48% and 27% more branched chain amino acids compared to fish on the 35% fishmeal diet, respectively. Plant protein significantly altered gut microbial composition, significantly decreasing α-diversity. Spirochaetes and the families Moritellaceae, Psychromonadaceae, Helicobacteraceae and Bacteroidaceae were all found at significantly lower abundances in the groups fed 80% plant protein diets compared to the control fishmeal diet.

Highlights

  • The effects of feeding an 80% plant protein diet, with and without fish protein hydrolysate (FPH) supplementation, on the growth and gut health of Atlantic salmon were investigated

  • Fish were fed either (A) a control diet containing 35% fishmeal (FM), (B) an 80% plant protein diet supplemented with 15% fishmeal (PL), (C) an 80% plant protein diet supplemented with 5% fishmeal and 10% partly hydrolysed FPH (PHP), or (D) an 80% plant protein diet supplemented with 5% fishmeal and 10% soluble FPH (SPH; Table 1)

  • This study has shown that reducing the fishmeal component of feeds, from 35% to 15%, in the place of plant proteins (PL diet), resulted in reduced growth in Atlantic salmon parr

Read more

Summary

Introduction

The effects of feeding an 80% plant protein diet, with and without fish protein hydrolysate (FPH) supplementation, on the growth and gut health of Atlantic salmon were investigated. Even when aquafeeds high in plant protein ( > 50%) are formulated to provide the required balance of amino acids and other essential nutrients (e.g. fatty acids, macro and trace metals), the growth performance obtained is inferior to that of fish fed fishmeal-based diets[2,4,5,7]. These shortcomings are often the result of plant proteins possessing anti-nutritional factors (e.g. phytate, saponins, lectins) and indigestible carbohydrates, as well as less efficient protein digestion and amino acid absorption[8]. The results from these studies, have found significant differences in the gut microbiota composition from those reported for Atlantic salmon at sea[29,30]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.