Abstract
Given the increasing amount of waste in the world, it is essential not only to reduce waste generation but also to explore potential uses for the waste produced. This includes waste generated in the production of building materials. The construction industry is a significant contributor to global waste and carbon dioxide emissions, making it crucial to address these issues for sustainable development. During the production of CETRIS boards, approximately 7 600 tons of waste are generated annually. One of the waste materials obtained during the board processing is a fine powder. This waste material can potentially be reused in two ways: it can be incorporated back into the process of producing CETRIS boards or utilized in the production of building materials. This research project focuses on examining the possibility of using this waste material as a substitute for fine aggregate in fine-grained concrete. To investigate its viability, the waste material underwent testing for dry density and absorbency. Subsequently, a reference mixture and concretes with different replacement rates (50%, and 100%) of natural fine aggregate were produced to create self-healing concrete mixtures. The study examined the density, and compressive strength of these concrete samples 28 days after concreting. The findings indicated that as the amount of waste material in the concrete increased, the measured properties decreased. However, despite the decrease, the compressive strengths of the concrete remained very high, leading to the classification as high-strength concrete. Further exploration and optimization of the replacement rates could lead to the development of environmentally friendly and sustainable building materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have