Abstract

The present study describes the effect of replacement of digestible starch by resistant starch (RS) on diet-induced thermogenesis (DIT), postprandial glucose and insulin responses, and colonic fermentation. Ten healthy males consumed three test meals, consisting of diluted, artificially-sweetened fruit syrup and either 50 g raw potato starch (550 g RS/kg), or 50 g pregelatinized potato starch (0 g RS/kg) or 30 g pregelatinized potato starch plus 20 g lactulose (670 g indigestible disaccharide/kg). The meals were served in the morning after an overnight fast. Each volunteer consumed each meal twice on six separate days in random order. Metabolic rate was measured by indirect calorimetry in the fasting state for 15 min and postprandially for 5 h. Shortly before and hourly up to 7 h after consumption of the test meal, end-expiratory breath samples were obtained for H2 and CH4 analysis. Shortly before the meal and 30, 60, 180, and 300 min postprandially, blood samples were taken for glucose and insulin analyses. Postprandial increases in glucose and insulin levels were proportional to the amount of digestible carbohydrate in the meal. Breath H2 and CH4 concentrations indicated that the pregelatinized starch was not fermented and that lactulose was fermented rapidly. Fermentation of the raw starch started only 6 to 7 h after consumption, resulting in a rise in breath H2 but not in CH4. The replacement of 27 g digestible starch by RS in a single meal lowered DIT by on average 90 kJ/5 h, as could also be calculated by assuming that RS does not contribute to DIT. The ingestion of lactulose resulted in a substantial rise in DIT which was most probably caused by its fermentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.