Abstract

In a 21-d study, 480 Cobb 500 (off-sex) male broiler chicks were used to investigate the effects of feeding different sources and levels of resistant starches (RS) on growth performance, nutrient and energy utilization, and intestinal health in broiler chickens. The birds were allocated to 10 dietary treatments in a 3 × 3 + 1 factorial arrangement. The factors were 3 RS-sources (RSS): banana starch (BS), raw potato starch (RPS), and high-amylose corn starch (HCS); each at 3 levels (RSL) 25, 50, or 100 g/kg plus a corn-soybean meal control diet. Birds and feed were weighed on d 0, 8, and 21. On d 21, samples of jejunal tissue and digesta were collected for chemical analysis. Data were analyzed using the mixed model procedure of JMP with factor levels nested with the control. In the 0 to 21 phase, the birds fed the RPS diets had higher (P = 0.011) FI than those fed HCS or control diets, and FCR was greater (P = 0.030) in birds that received BS diets than in other diets. RSS × RSL was significant (P < 0.05) for total tract nutrient retention, AME, and AMEn on d 21. The starch digestibility was higher (P < 0.001) in birds that received the control diet than in RS diets, and decreased as RS levels increased, except for HCS. The apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) were higher (P < 0.001) in birds fed 100 g/kg HCS diet, with both decreasing with increasing levels of BS and RPS, except for HCS. Relative ileal oligosaccharides profile showed significant (P < 0.05) RSS × RSL with a higher relative abundance of Hex(3) (P = 0.01) and Pent(3) (P = 0.001) in HCS diets. In conclusion, RS may influence gut health and growth performance in broiler chickens through modulation of cecal SCFA and nutrient digestion, but these depend largely on the botanical origin and concentrations of individual RS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.