Abstract

In this paper, a periodical replacement model combining the concept of cumulative repair cost limit for a two-unit system with failure rate interaction is presented. In this model, whenever unit 1 fails, it causes a certain amount of damage to unit 2 by increasing the failure rate of unit 2 of a certain degree. Unit 2 failure whenever occurs causes unit 1 into failure at the same time and then the total failure of the system occurs. Without failure rate interaction between units, the failure rates of two units also increase with age. When unit 1 fails, the necessary repair cost is estimated and is added to the accumulated repair cost. If the accumulated repair cost is less than a pre-determined limit L, unit 1 is corrected by minimal repair. Otherwise, the system is preventively replaced by a new one. Under periodical replacement policy and cumulative repair cost limit, the long-run expected cost per unit time is derived by introducing relative costs as a criterion of optimality. The optimal period T* which minimizes that cost is discussed. A numerical example is given to illustrate the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.