Abstract
To solve the current and future mask shortage problems, developing methods of disinfecting respirators is essential, where none of the existing methods have been successfully utilized until recently. Herein, we introduce a novel method of conferring antibacterial activity to the main filtering material (i.e., polypropylene (PP)) of a respirator through sequential polydopamine (PDA) coatings. Two-step dip-coating in dopamine solution, which corresponds to one complete cycle, produces stable PDA films at the interface of the filtering material, which subsequently locally generates H2O2 that can be further transformed into hydroxyl radicals to inactivate pathogens. Specifically, the primary dip-coating creates a scaffold PDA film that acts as a mechanical support, and anchoring dopamine, which substantially produces H2O2, is immobilized to the scaffold PDA during the subsequent secondary dip-coating process. The antibacterial activity was confirmed by bacterial tests using Escherichia coli. In short, the number of colonies after incubation of the polypropylene filter with and without the PDA coating in the bacterial solution was compared. The number of bacteria in the PDA-coated sample (0.54 × 109 CFU/mL·cm2) was significantly reduced compared to that in the original PP sample (0.81 × 109 CFU/mL·cm2), demonstrating a positive relationship with the H2O2 production. Moreover, this antibacterial ability can be maintained by simply utilizing additional PDA coatings, suggesting that the respirators can be recycled. Finally, the in vitro cytotoxicity was confirmed by the CCK-8 assay, which demonstrated that the PDA-coated PP filter is biocompatible. We believe that the newly proposed method for disinfection of respirators may substitute conventional methods and can be used to alleviate the mask shortage problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.