Abstract

The prefrontal cortex (PFC) plays an important role in higher cognitive processes, and in the regulation of stress-induced hypothalamic-pituitary-adrenal (HPA) activity. Here we examined the effect of repeated restraint stress on dendritic spine number in the medial PFC. Rats were perfused after receiving 21 days of daily restraint stress, and intracellular iontophoretic injections of Lucifer Yellow were carried out in layer II/III pyramidal neurons in the anterior cingulate and prelimbic cortices. We found that stress results in a significant (16%) decrease in apical dendritic spine density in medial PFC pyramidal neurons, and confirmed a previous observation that total apical dendritic length is reduced by 20% in the same neurons. We estimate that nearly one-third of all axospinous synapses on apical dendrites of pyramidal neurons in medial PFC are lost following repeated stress. A decrease in medial PFC dendritic spines may not only be indicative of a decrease in the total population of axospinous synapses, but may impair these neurons' capacity for biochemical compartmentalization and plasticity in which dendritic spines play a major role. Dendritic atrophy and spine loss may be important cellular features of stress-related psychiatric disorders where the PFC is functionally impaired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.