Abstract

BackgroundThe dilution-replicate experimental design for qPCR assays is especially efficient. It is based on multiple linear regression of multiple 3-point standard curves that are derived from the experimental samples themselves and thus obviates the need for a separate standard curve produced by serial dilution of a standard. The method minimizes the total number of reactions and guarantees that Cq values are within the linear dynamic range of the dilution-replicate standard curves. However, the lack of specialized software has so far precluded the widespread use of the dilution-replicate approach.ResultsHere we present repDilPCR, the first tool that utilizes the dilution-replicate method and extends it by adding the possibility to use multiple reference genes. repDilPCR offers extensive statistical and graphical functions that can also be used with preprocessed data (relative expression values) obtained by usual assay designs and evaluation methods. repDilPCR has been designed with the philosophy to automate and speed up data analysis (typically less than a minute from Cq values to publication-ready plots), and features automatic selection and performance of appropriate statistical tests, at least in the case of one-factor experimental designs. Nevertheless, the program also allows users to export intermediate data and perform more sophisticated analyses with external statistical software, e.g. if two-way ANOVA is necessary.ConclusionsrepDilPCR is a user-friendly tool that can contribute to more efficient planning of qPCR experiments and their robust analysis. A public web server is freely accessible at https://repdilpcr.eu without registration. The program can also be used as an R script or as a locally installed Shiny app, which can be downloaded from https://github.com/deyanyosifov/repDilPCR where also the source code is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.