Abstract
In this study, mortar beams reinforced by shape memory alloy (SMA) fibers of NiTi and NiTiNb alloys were prepared to perform crack-repairing tests using three-point bending tests. The SMA fibers had a length of 30 mm, and their types were straight, dog-bone, and dog-bone with paper wrapping. For the bending tests, twelve types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Half of them had a top steel reinforcement, and equal numbers of beams were assigned to the NiTi and NiTiNb fibers. Five SMA fibers were located at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. Epoxy was used to fill the cracks to bond the cracked surfaces using injection, and a hot-gun was used to heat the SMA fibers in the cracks. The crack widths were measured before and after the cracks were repaired, and force–displacement curves were obtained to assess the flexural strength recovery ratio of the beams. It does not appear that the crack-closing capacity of SMA fibers is a crucial factor to recover the flexural strength in repaired beams. However, adequate application of epoxy is critical for repairing cracks, and the residual stress of SMA fibers seems to contribute to increase flexural strength of repaired beams. The residual stress of SMA fibers functions as prestress on mortar and delays the initiation of cracking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have