Abstract
PLLA, PLA-PEG and PLGA porous scaffolds with pore size ranging from 100 to 250 μm and porosity over 85% were fabricated by a solution-casting/salt-leaching method. The porous structure and porosity of the scaffold were mainly dependent on volume fraction and size of the porogens of NaCl particles. The effects of the polymeric materials on the cell culture behavior and bone formation in vitro in their scaffolds were studied. In vitro cell culture in the scaffolds of the three polymers demonstrated that mesenchymal stem cells (MSCs) had a good adhesion and spread. The composite matrixes cultured for several days possessed preliminary functions of tissue-engineering bone, with signs of the calcium knur formation and the expression of osteocalcin and collagen I in mRNA, especially that of PLA-PEG and PLGA. These cell-loaded porous scaffolds showed effective repair of mandibular defect of rabbits in vivo. Contrastive experiments demonstrated that the MSCs/PLGA scaffold owned better ability facilitating for the MSCs proliferation, differentiation and defect repair. These composite scaffolds can be a potential effective tool for treating mandibular and other bone defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have