Abstract

Although steel hydraulic structures have a protective system to prevent corrosion, this type of deterioration will eventually occur due to the constant exposure to harsh environmental conditions. There are several techniques that can be implemented to repair corroded steel structural elements. This report presents a numerical study to evaluate the mechanical behavior of corroded steel girders used in hydraulic steel structures and to evaluate several carbon fiber–reinforced polymers (CFRP) layups to repair them. The girders were modeled as simply supported with four-point loading boundary conditions. The corrosion deterioration was modeled as loss in section as 10%, 25%, and 40%. The effectiveness of the deterioration was established based on the level of stresses at the steel compared with the undamaged condition after it is strengthened with CFRP. It was found that CFRP repair is more practical for reducing the stresses at the steel in the shear dominated zone if deterioration is below 25%. At the tensile dominated zone, CFRP is effective for reducing the stresses for deterioration below 40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call