Abstract

The suprachiasmatic nucleus (SCN), locus of the master circadian clock in the brain, is comprised of multioscillator neural networks that are highly plastic in responding to environmental lighting conditions. Under a 24-h light:dark:light:dark (LDLD) cycle, hamsters bifurcate their circadian locomotor activity such that wheel running occurs in each of the 2 daily dark periods with complete inactivity in between. In the present study, we explored the neural underpinning of this behavioral bifurcation. Using calbindin (CalB)- containing cells of the SCN as a regional marker, we characterized PER1 and c-FOS expression in the core and shell SCN subregions. In LD-housed animals, it is known that PER1 and c-FOS in the core and shell region are in phase with each other. In contrast, in behaviorally bifurcated animals housed in LDLD, the core and shell SCN exhibit antiphase rhythms of PER1. Furthermore, cells in the core show high FOS expression in each photophase of the LDLD cycle. The activation of FOS in the core is light driven and disappears rapidly when the photophase is replaced by darkness. The results suggest that bifurcated activity bouts in daytime and nighttime are associated with oscillating groups of cells in the core and shell subregions, respectively, and support the notion that reorganization of SCN networks underlies changes in behavioral responses under different environmental lighting conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call