Abstract

The suprachiasmatic nucleus (SCN) is the anatomical substrate for the principal circadian clock coordinating daily rhythms in a vast array of behavioral and physiological responses. Individual SCN neurons are cellular oscillators and are organized into a multi-oscillator network following unique spatiotemporal patterns. The rhythms generated in the SCN are generally entrained to the environmental light dark cycle, which is the most salient cue influencing the network organization of the SCN. The neural network in the SCN is a heterogeneous structure, containing two major compartments identified by applying physiological and functional criteria, namely the retinorecipient core region and the highly rhythmic shell region. Changes in the environmental lighting condition are first detected and processed by the core region, and then conveyed to the rest of the SCN, leading to adaptive responses of the entire network. This review will focus on the studies that explore the responses of the SCN network by examining the expression of clock genes, under various lighting paradigms, such as acute light exposure, lighting schedules or exposure to different light durations. The results will be discussed under the framework of functionally distinct SCN sub regions and oscillator groups. The evidence presented here suggests that the environmental lighting conditions alter the spatiotemporal organization of the cellular oscillators within the SCN, which consequently affect the overt rhythms in behavior and physiology. Thus, information on how the SCN network elements respond to environmental cues is key to understanding the human health problems that stem from circadian rhythm disruption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call