Abstract
A crucial step in the mechanism for oxygen evolution in the Photosystem II complex resides in the transition from the S2 state to the S3 state of Kok–Joliot’s cycle, in which an additional water molecule binds to the cluster. On the basis of computational chemistry calculations on Photosystem II models, we propose a reorganization mechanism involving a hydroxyl (W2) and a μ2-oxo bridge (O5) that is able to link the closed cubane S2B intermediate conformer to the S3 open cubane structure. This mechanism can reconcile the apparent conflict between recently reported water exchange and electron paramagnetic resonance experiments, and theoretical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.