Abstract
The molecular mechanism of photosynthetic oxygen evolution remains a mystery in photosynthesis research. Although recent X-ray crystallographic studies of the photosystem II core complex at 3.0-3.5 A resolutions have revealed the structure of the oxygen-evolving center (OEC), with approximate positions of the Mn and Ca ions and the amino acid ligands, elucidation of its detailed structure and the reactions during the S-state cycle awaits further spectroscopic investigations. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was first applied to the OEC in 1992 as detection of its structural changes upon the S(1)-->S(2) transition, and spectra during the S-state cycle induced by consecutive flashes were reported in 2001. These FTIR spectra provide extensive structural information on the amino acid side groups, polypeptide chains, metal core, and water molecules, which constitute the OEC and are involved in its reaction. FTIR spectroscopy is thus becoming a powerful tool in investigating the reaction mechanism of photosynthetic oxygen evolution. In this mini-review, the measurement method of light-induced FTIR spectra of OEC is introduced and the results obtained thus far using this technique are summarized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.