Abstract

Mixed valence (MV) coordination compounds play important roles in redox reactions in chemistry and biology. Details of the contribution of a mixed valence state to protein electron transfer (ET) reactivity such as reorganization energy, however, have not been experimentally defined. Herein we report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of CuA azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also shown that lowering the pH from 8.0 to 4.0 results in a similar (approximately 0.4 eV) decrease in reorganization energy for both blue (type 1) and purple (CuA) azurins, even though the reorganization energies of the two different copper centers are different at a given pH. These results suggest that the MV state plays only a secondary role in modulation of the ET reactivity via the reorganization energy, as compared to that of the driving force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.