Abstract

A series of electron transfer (ET) reactions between some organic molecules have been investigated through ab initio calculations. Biphenyl (Bp) and 9,9 ′-dimethylfluorene anion radicals are chosen as the donor, whereas several organic molecules with different redox abilities are chosen as the acceptor. The inner reorganization energy and the endothermicity of the ET reactions in those molecule–ion systems have been estimated through the HFSCF and complete active space multiconfiguration SCF calculations. Double-well potentials for the gas-phase ET reactions have been constructed using the linear reaction coordinate, and the results show that the quinone-containing ET reactions are in Marcus' inverted region. It has been found that the inner reorganization energies are different for various donor-acceptor couples, unlike the experimentally fitted ones. The contribution from the inter-ring torsional motion in Bp to the inner reorganization energy has been evaluated from the energy difference of the biphenyl-acceptor and the dimethylfluorine-acceptor systems. Comparisons with the experimentally observed results have been made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.