Abstract

Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle–Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call