Abstract
We derived the renormalized nonlinear sensitivity operator and the related inverse thin-slab propagator (ITSP) for nonlinear tomographic waveform inversion based on the theory of nonlinear partial derivative operator and its De Wolf approximation. The inverse propagator is based on a renormalization procedure to the forward and inverse transition matrix scattering series. The ITSP eliminates the divergence of the inverse Born series for strong perturbations by stepwise partial summation (renormalization). Numerical tests showed that the inverse Born T-series starts to diverge at moderate perturbation (20% for the given model of Gaussian ball with a radius of 5 wavelength), while the ITSP has no divergence problem for any strong perturbations (up to 100% perturbation for test model). In addition, the ITSP is a non-iterative, marching algorithm with only one sweep, and therefore very efficient in comparison with the iterative inversion based on the inverse-Born scattering series. This convergence and efficiency improvement has potential applications to the iterative procedure of waveform inversion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have