Abstract
The formalism recently introduced in [BHZ19] allows one to assign a regularity structure, as well as a corresponding “renormalisation group”, to any subcritical system of semilinear stochastic PDEs. Under very mild additional assumptions, it was shown in [CH16] that large classes of driving noises exhibiting the relevant small-scale behaviour can be lifted to such a regularity structure in a robust way, following a renormalisation procedure reminiscent of the BPHZ procedure arising in perturbative QFT. The present work completes this programme by constructing an action of the renormalisation group on a suitable class of stochastic PDEs which is intertwined with its action on the corresponding space of models. This shows in particular that solutions constructed from the BPHZ lift of a smooth driving noise coincide with the classical solutions of a modified PDE. This yields a very general black box type local existence and stability theorem for a wide class of singular non-linear SPDEs.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have