Abstract
The existence of many anions in wastewater reduces the removal efficiency of phosphate by adsorbents under realistic conditions. Facing this challenge, the study reports on an insistent and stable composite adsorbent of molybdate complexes Fe-(MoOx) embedded in a macroporous anion exchange resin (D-201). [Fe(MoOx)]-D-201 shows 93.7% adsorption capacity (28.3 mg/g) for phosphate even when the molar concentration of coexisting ions is 5 times higher than phosphate. The capacity of adsorbent is maintained more than 84.2% after five regeneration cycles to remove phosphate in the wastewater containing coexisting ions. The ability of highly selective removal of phosphate is maintained during the regeneration cycles explained by the change of the binding of molybdate clusters with phosphate, which is due to the different structures of molybdate clusters depending on various pH. In general, this work puts forward a new idea for the development of phosphorus removal adsorbents for the treatment of wastewater containing coexisting ions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have