Abstract
AbstractChitin originating from marine sponges possesses a unique nanofibrillar network structure that is the basic element of the microtubular scaffold-like skeleton of these organisms. Sponge chitin represents an intriguing example of thermostability, as it is stable up to 400 °C. It also constitutes a renewable biological source due to the high regeneration ability of Aplysina sponges under marine farming conditions. These properties can be exploited for the facile and environmentally friendly creation of novel, biocompatible organic-inorganic hybrid materials with a range of uses. Here, chitin-based scaffolds isolated from the skeleton of marine demosponge Aplysina aerophoba were used as a template for the in vitro formation of iron oxide from a saturated iron(III) chloride solution, under hydrothermal conditions (pH~1.5, 90 °C). The resultant chitin-Fe2O3 three dimensional composites, prepared for the first time via hydrothermal synthesis route, were thoroughly characterized using light, fluorescence and scanning electron microscopy; as well as with analytical methods like Raman spectroscopy, electron diffraction and HR-TEM. The results show that this versatile method allows for efficient chitin mineralization with respect to hematite. Additionally, we demonstrate that chitin nanofibers template the nucleation of uniform Fe2O3 nanocrystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bioinspired Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.