Abstract

The aging kidney has a diminished regenerative potential and an increased tendency to develop tubular atrophy and fibrosis after acute injury. In this study, we found that activation of tubular epithelial Notch1 signaling was prolonged in the aging kidney after ischemia/reperfusion (IR) damage. To analyze the consequences of sustained Notch activation, we generated mice with conditional inducible expression of Notch1 intracellular domain (NICD) in proximal tubules. NICD kidneys were analyzed 1 and 4 wk after renal IR. Conditional NICD expression was associated with aggravated tubular damage, a fibrotic phenotype, and the expression of cellular senescence markers p21 and p16(INK4a). In wild-type mice pharmacological inhibition of Notch using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) improved tubulo-interstitial damage and antagonized the prosenescent pathway activation after IR. In vitro, activation of Notch signaling with delta-like-ligand-4 caused prosenescent changes in tubular cells while inhibition with DAPT attenuated these changes. In conclusion, our data suggest that sustained epithelial Notch activation after IR might contribute to the inferior outcome of old kidneys after injury. Sustained epithelial activation of Notch is associated with a prosenescent phenotype and maladaptive repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.