Abstract

Spinal cord neurons contribute to elevated sympathetic vasomotor activity in renovascular hypertension (2K1C), particularly, increased actions of angiotensin II. However, the origin of these spinal angiotensinergic inputs remains unclear. The present study aimed to investigate the role of spinal angiotensin II type 1 receptor (AT1) receptors in the sympathoexcitatory responses evoked by the activation of the rostral ventrolateral medulla (RVLM) in control and 2K1C Goldblatt rats. Hypertension was induced by clipping of the left renal artery. After 6 weeks, a catheter (PE-10) filled with losartan was inserted into the subarachnoid space and advanced to the T10-11 vertebral level in urethane-anesthetized rats. The effects of glutamate microinjection into the RVLM on blood pressure (BP), heart rate (HR), and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively) were evaluated in the presence or absence of spinal AT1 blockade. Tachycardic, pressor, and renal sympathoexcitatory effects caused by RVLM activation were significantly blunted by losartan in 2K1C rats, but not in control rats. However, no differences were found in the gene expression of angiotensin-converting enzyme, angiotensinogen, and renin in the spinal cord segments between the groups. In conclusion, acute sympathoexcitation induced by RVLM activation is dependent on the spinal AT1 receptor in Goldblatt, but not in control, rats. The involvement of other central cardiovascular nuclei in spinal angiotensinergic actions, as well as the source of angiotensin II, remains to be determined in the Goldblatt model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call