Abstract

Dysglycaemia accelerates cognitive decline. Intensive glucose control may help delay or prevent cognitive function decline (CFD). We aimed to determine how patient characteristics influence the effect of intensive glucose control [glycated haemoglobin (HbA1c) <6.0%] on delaying CFD in people with type 2 diabetes. In this post-hoc analysis of 2977 type 2 diabetes participants from the ACCORD MIND trial, we applied the causal forest and causal tree algorithms to identify the effect modifier of intensive glucose control in delaying CFD from 68 variables (demographics, disease history, medications, vitals and baseline biomarkers). The exposure was intensive versus standard glucose control (HbA1c <6.0% vs. 7.0%-7.9%). The main outcome was cognitive function changes from baseline to the 40th month follow-up, which were evaluated using the digit symbol substitution test, Rey auditory verbal learning test, mini-mental state examination and Stroop test. We used Cohen's d, a measure of standardized difference, to quantify the effect size of intensive glucose control on delaying CFD. Among all the baseline characteristics, renal function was the most significant effect modifier. Participants with urinary albumin levels <0.4 mg/dl [absolute function change (AFC): 0.51 in mini-mental state examination, 95% confidence interval (CI): 0.04, 0.98, Cohen's d: 0.25] had slower CFD with intensive glucose control. Patients with preserved renal function (estimated glomerular filtration rate between 60 and 90 ml/min/1.73 m2) were associated with small benefits (AFC: 1.28 in Stroop, 95% CI: 0.28, 2.27, Cohen's d: 0.12) when undergoing intensive glucose control. Conversely, participants with an estimated glomerular filtration rate <60 ml/min/1.73 m2 (AFC: -0.57 in the Rey auditory verbal learning test, 95% CI: -1.09, -0.05, Cohen's d: -0.30) exhibited faster CFD when undergoing intensive glucose control. Participants who were <60 years old showed a significant benefit from intensive glucose control in delaying CFD (AFC: 1.08 in the digit symbol substitution test, 95% CI: 0.06, 2.10, Cohen's d: 0.13). All p < .05. Our findings linked renal function with the benefits of intensive glucose control in delaying CFD, informing personalized HbA1c goals for those with diabetes and at risk of CFD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.