Abstract
To study the contribution of sympathetic nerve activity (SNA) to the development of hypertension, experiments were designed to continuously and simultaneously measure renal (RSNA) and lumbar SNA (LSNA) during the development of hypertension induced by 8% salt loading in Dahl salt-sensitive (DS) rats. Male DS and salt-resistant rats were instrumented with bipolar electrodes to record RSNA and LSNA and a telemeter to record arterial pressure (AP). AP increased during the first 3 days after the onset of salt loading by ≈10 mm Hg in both DS and Dahl salt-resistant rats. AP continued to increase progressively from day 4 to day 14 of salt loading by 33±1 mm Hg in DS rats, while it remained the same in Dahl salt-resistant rats. RSNA and LSNA increased in the initial few days by 6% to 8%, and decreased gradually thereafter, suggesting that increases in neither RSNA nor LSNA are directly linked with the progressive increase in AP induced by salt loading in DS rats. After the cessation of salt loading, AP pressure returned to the presalt loading level in both DS and Dahl salt-resistant rats. RSNA increased significantly by 32±3% after the cessation of salt loading, while LSNA remained the same in DS rats, suggesting that salt-sensitive mechanisms respond to a loss of sodium, not a gain, and selectively activate RSNA in DS rats. In summary, RSNA and LSNA are not likely to be a primary trigger to initiate the progressive increase in AP induced by 8% salt loading in DS rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have