Abstract
Based on a review of literature in various fields of research related to hypertension, we develop a new working hypothesis on the pathophysiology of genetically determined increases in blood pressure. According to our hypothesis, the primary defect is located in the kidneys. Renal alpha-adrenergic receptor density is increased in the early stages of the disease, before increases in blood pressure occur. Most renal alpha-adrenergic receptors are located in the proximal tubules and enhance Na+ reabsorption. A genetically determined increase of alpha 1- or alpha 2- or of both alpha-adrenergic receptor subtypes would impair Na+ excretion and, together with increased Na+ intake, would lead to positive Na+ balance. Subsequently, various mechanisms would be activated to restore a neutral Na+ balance, including the secretion of a natriuretic factor that inhibits Na+/K+-ATPase. Inhibition of Na+/K+-ATPase in extrarenal tissues would increase the intracellular concentration of Na+ and, via Na+/Ca2+ exchange, of Ca2+. Elevated intracellular Ca2+ would enhance vascular smooth muscle contractility and neuronal transmitter release, thereby leading to vasoconstriction and to increases in blood pressure. We thus hypothesize that hypertension is a homeostatic response designed to protect blood volume from a genetically determined renal alpha-adrenergic receptor-mediated increase in Na+ retention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have