Abstract

In this study, we investigated the benefit of combining Chlorella sorokiniana with manganese-containing ferrite nanoparticles (NPs) for heavy metal removal and cell harvesting. Our results demonstrate that the combination of non-toxic nanoparticles significantly enhances the heavy metal removal capacity of C. sorokiniana without affecting its growth. The microalgae combined with NPs was able to sequester Cr6+, Co2+, and Ni2+ from aqueous solutions and could remove these metals at a higher adsorption capacity and within a relatively short time than their individual counterparts, indicating a synergistic effect between the algal cells and the nanomaterials, where bioadsorption and chemisorption were the main players. Both biosorption and chemisorption capacities were found to be the highest for single-metal systems and decreased when coexisting ions were present in the solution. The adsorption of the heavy metals evaluated was better described by the pseudo-second order model than the pseudo-first order model, indicating that chemisorption dominated over physisorption. These characteristics suggest that the combination of biosorbents with nanosorbents is a promising approach for the treatment of water contaminated with heavy metals making this process more efficient, economical, sustainable, and clean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call