Abstract
Purpose: Image is an imitation of everything that can be materialized, and digital images are taken using a machine. Although digital image capture uses machines, digital images are not free from interference. Image restoration is needed to restore the quality of the damaged image.Methods: Bi-directional Akamatsu Transform is proven to have an effective performance in reducing blur in images. Meanwhile, Discrete Wavelet Transform has been widely used in digital image processing research. We had been investigated the image restoration method by combining Bi-directional Akamatsu Transform and Discrete Wavelet Transform. Bi-directional Akamatsu Transform applied in Low-Low (LL) sub-band is the Discrete Wavelet Transform decomposition image most similar to the original image before decomposing. In this study, there are still shortcomings, including the determination of the values of N, up_enh, and down_enh, which are still manual. Manually setting the three values makes the Bi-directional Akamatsu Transform method not get the best results. With the use of machine learning methods can get better restoration results. Further testing is also needed for a more diverse and robust blur. The image data has a resolution of 256x256, 512x512, and 1024x1024. The image will be directly converted to a grey-scale image. The converted image will be given an attack model: average blur, gaussian blur, and motion blur. The image that has been attacked will apply two restoration methods: the proposed method and the Bi-direction Akatamatsu Transform. These two restoration images will then be compared using PSNR.Result: The average PSNR value from the restoration of the proposed method is 0.1446 higher than the average PSNR value from the restoration of the Bi-directional Akamatsu Transform method. When we compare it with the average PSNR value of the Akamatsu Transform restoration method, the average PSNR of the proposed method is 0.2084.Value: The combination of DWT and akamatsu transform results produce good PSNR values even though they have gone through the blurring method in image restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.