Abstract
Occurrence of pharmaceutical micropollutants in aquatic environments has been one amongst serious environmental problems. During this study, two reactors, including a sequencing batch reactor (SBR) + powdered composite adsorbent (CA) (first reactor, SBR + CA) and a sequencing batch reactor (second reactor, SBR), were designed to treat synthetic wastewater. Powdered CA was added with a dosage of 4.8 g L−1 to the first reactor. Tap water was contaminated with chemical oxygen demand (COD), ammonia and three pharmaceuticals, namely, atenolol (ATN), ciprofloxacin (CIP) and diazepam (DIA) to produce synthetic wastewater. The SBR + CA illustrated a better performance during synthetic municipal wastewater treatment. Up to 138.6 mg L−1 (92.4%) of COD and up to 114.2 mg L−1 (95.2%) of ammonia were removed by the first reactor. Moreover, optimisation of pharmaceuticals removal was conducted through response surface methodology (RSM) and artificial neural network (ANN). Based on the RSM, the best elimination of ATN (90.2%, 2.26 mg L−1), CIP (94.0%, 2.35 mg L−1) and DIA (95.5%, 2.39 mg L−1) was detected at the optimum initial concentration of MPs (2.51 mg L−1) and the contact time (15.8 h). In addition, ANN represented a high R2 value (>0.99) and a rational mean squared error (<1.0) during the optimisation of micropollutants removal by both reactors. Moreover, adsorption isotherm study showed that the Freundlich isotherm could justify the abatement of micropollutants by using CA better than the Langmuir isotherm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.