Abstract

Wastewater filtration is considered the main solution to water shortages. Here, we treated synthetic wastewater by combining treatment techniques, namely, electrochemical oxidation and adsorbent added sequencing batch reactor (SBR). One beaker with a working value of 1500 mL was applied in this contemporary study. In the upper part of the beaker, an anode and a cathode (Ti/RuO2-IrO2) were arranged in parallel for the electrochemical oxidation process. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was added as the electrolyte. The voltage and current were set to 7.50 V and 0.40 A, respectively. Aeration was conducted at the bottom of the beaker. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. In addition, 1.50 g/L of powdered cockleshell was added in the reactor. Response surface methodology was used for statistical analysis. In synthetic wastewater, concentrations of COD, ammonia, phenols and chromium were 2500 mg/L, 2500 mg/L, 100 mg/L and 100 mg/L, respectively. pH and reaction time (h) were considered as independent factors. A total of 2430 mg/L biochemical oxygen demand, 2500 mg/L ammonia, 90.0 mg/L phenols, and 84.0 mg/L chromium were eliminated at the optimum reaction time (72.9 min) and pH (6.5). The energy consumption value was 6.5 (kWh kg−1) at the optimum operating conditions. This study indicated that this combined treatment system exhibited high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.