Abstract

This study employed simple polystyrene-coated magnetite nanoparticles (PS@MNPs)-assisted batch adsorption process for the removal of two antidepressant active ingredients (amitriptyline HCl and sertraline HCl) from hospital wastewater. Dominant parameters of the adsorption process including pH, adsorbent amount, and contact period were optimized through the univariate approach to enhance the adsorption efficiency. Upon reaching optimum adsorption conditions, equilibrium experiments were performed by spiking the adsorbates in hospital wastewater in the concentration range of 100-2000 μg/L. The concentrations of the adsorbates in the effluent were calculated using the matrix-matching calibration strategy to enhance the accuracy of quantification. A validated switchable solvent-based liquid phase microextraction (SS-LPME) method was employed to enrich the two active pharmaceutical ingredients (APIs) prior to sensitive determination with GC-MS (gas chromatography-mass spectrometry). The equilibrium data were mathematically modeled employing the Langmuir and Freundlich adsorption isotherm models. The isotherm constants were calculated, and the results showed that both the isotherm models fitted well with the experimental data. The efficient and simple batch adsorption strategy reported in this study was successfully employed to remove amitriptyline HCl and sertraline HCl from hospital wastewater at low concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.