Abstract

The removal of soluble phosphorus using iron and aluminum electrodes was studied in water samples from the Red River, a hyper-eutrophic stream in Winnipeg, Canada. Four trials were conducted: (I) mixed batch with 150-900 mA applied for 1 min to 1 L, (II) stagnant batch with 600-900 mA applied for 1 min to 1 L, and (III and IV) continuously stirred-tank reactor with 6.25-10 min hydraulic retention times and constant 900 mA. Maximum soluble phosphorus removals of 70-80% were observed in mixed batch, and there was no significant difference between aluminum and iron electrodes (P value of 0.0526-0.9487). Aluminum electrodes performed significantly worse than iron electrodes under higher hydraulic loads, with iron removing >70% soluble phosphorus and aluminum <40% (P values of 0.0035-0.0143). The estimated cost of consumables, reported per million liters of water treated, to remove 70% soluble phosphorus from eutrophic waters with 0.35 g m-3 soluble phosphorus would include 5-17.5 USD electricity costs and material costs of 5.3-12.2 USD for iron and 39.2 USD for aluminum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.