Abstract

The increasing production and use of silver nanoparticles (AgNPs) have attracted more and more attention due to their environmental and health risks. Municipal sewage biological treatment unit has been playing an important role in the removal of AgNPs. This study investigated the mechanism and characteristics of AgNPs and their removal from aqueous solution by activated sludge. Results from Scanning Electron Microscope and Energy Dispersive Spectrometer (SEM/EDS) showed that mixed AgNPs were immobilized by activated sludge. It was shown by X-ray photoelectron spectroscopy (XPS) that the fixed AgNPs had an oxidation state of +1. It was inferred by fourier transform infra-red (FTIR) spectra that AgNPs were adsorbed by activated sludge via binding with its primary amino (R-NH2) radical groups on the surface. These results revealed that the major mechanism for the removal of AgNPs by activated sludge was adsorption. The experiment data were in agreement with the Langmuir and Redlich-Peterson isotherms. The maximum adsorption capacity ranged from 12–32 mg g−1 at temperatures of 10–30 °C. Thermodynamic experiment showed that the adsorption of AgNPs by activated sludge was a spontaneous and endothermic reaction. The adsorption kinetics data were in good agreement with the pseudo-second-order model. The factor results indicated that the adsorption of AgNPs onto activated sludge was influenced by electrostatic repulsion, agglomeration, and the process of oxidation and sulfurization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call