Abstract

The saturated hydrocarbons methane and ethane are often used as collisional energy transfer agents in diode-pumped alkali vapor lasers (DPALs). Problems are encountered because the hydrocarbons eventually react with the optically pumped alkali atoms, resulting in the contamination of the gas lasing medium and damage of the gas cell windows. The reactions require excitation of the more highly excited states of the alkali atoms, which can be generated in DPAL systems by energy pooling processes. Knowledge of the production and loss rates for the higher excited states is needed for a quantitative understanding of the photochemistry. In the present study, we have used experimental and theoretical techniques to characterize the removal of Rb(6P2) by hydrogen, methane, and ethane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call