Abstract

In this paper, we experimentally demonstrate an 8-Gbit/s quadrature-phase-shift-keying (QPSK) coherent underwater wireless optical communication (UWOC) link under scattering conditions at 532 nm. At the transmitter, we generate the 532-nm QPSK signal using second-harmonic generation (SHG), where the 1064-nm signal modulated with four phase levels of an 8-phase-shift-keying (8-PSK) format is phase doubled to produce the 532-nm QPSK signal. To enhance the receiver sensitivity, we utilize a local oscillator (LO) at the receiver from an independent laser source. The received QPSK data beam is mixed with the independent LO for coherent heterodyne detection. Results show that the bit error rates (BERs) of the received QPSK signal can reach below the 7% forward error correction (FEC) limit under turbid water with attenuation lengths (γL) up to 7.4 and 6.1 for 2- and 8-Gbit/s QPSK, respectively. The corresponding receiver sensitivities are -34.0 and -28.4 dBm for 2- and 8-Gbit/s QPSK, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.