Abstract
ABSTRACT To overcome the drawbacks of typical Fe-C micro-electrolysis in wastewater treatment, we developed a new electrolysis material, integrated Fe/C aggregate (FCA) made from Fe0 and carbon powder, and used it for phosphate removal from wastewater. Results show that the free iron ions could quickly react with and form an iron phosphate precipitate in phosphate-containing wastewater. The release rate of iron ions was extremely rapid in the first 10 h, indicating that Fe-C microscopic galvanic cells formed on the aggregate surface. Acid conditions are beneficial for accelerating the Fe-C micro-electrolysis reaction and enhancing the iron ion release capacity and phosphate removal capacity. In batch experiments, the maximum phosphate removal capacity of FCA was found to be 10.84 mg P/g. The phosphate removal behaviour of FCA can be well described by the Langmuir isotherm model and the pseudo-second-order kinetic model. SEM and XPS investigations also revealed that phosphates were absorbed by ferrous or ferric hydroxide and generated Fe-P precipitate, which adhered to the surface of FCA throughout the phosphate removal process. Because of its low cost and outstanding performance, the FCA aggregate has a high potential for P removal in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.