Abstract

Nowadays, alternative options to conventional wastewater treatment should be studied due to rising concerns emerged by the presence of pharmaceuticals compounds (PhCs) in the aquatic environment. In this work, a combined system including biological treatment by activated sludge plus adsorption with activated carbon is proposed to remove three selected drugs (acetaminophen (ACT), caffeine (CAF) and ibuprofen (IBU)) in a concentration of 2 mg L−1 of each one. For it three sequencing batch reactors (SBR) were operated. SBR-B treated a synthetic wastewater (SWW) without target drugs and SBR-PhC and SBR-PhC + AC operated with SWW doped with the three drugs, adding into SBR-PhC + AC 1.5 g L−1 of a mesoporous granular activated carbon. Results showed that the hybrid system SBR-activated carbon produced an effluent free of PhCs, which in addition had higher quality than that achieved in a conventional activated sludge treatment in terms of lower COD, turbidity and SMP concentrations. On the other hand, five possible routes of removal for target drugs during the biological treatment were studied. Hydrolysis, oxidation and volatilization pathways were negligible after 6 h of reaction time. Adsorption route only was significant for ACT, which was adsorbed completely after 5 h of reaction, while only 1.9% of CAF and 5.6% of IBU were adsorbed. IBU was the least biodegradable compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.