Abstract
Personal care products (PCPs) are contaminants of emerging concern because of their continuous input into the environment. In this study, membrane bioreactor (MBR) and constructed wetland (CW) methods were used to investigate the effect and mechanism of conventional pollutant and PCP removal from greywater. The effluent of both the MBR- and CW-treated greywater met the reclaimed water reuse standard in China. Conventional pollutants and five target PCPs had a higher removal efficiency in the MBR than in the CW. The removal rates of the PCPs, including Tuina musk (AHTN), were >80% using MBR and CW methods. The main pathway of removing PCPs in the MBR was sludge adsorption and biodegradation, whereas the contribution of the membrane module was weak. The main pathway of removing PCPs in the CW was the combined action of plant absorption, microbial biodegradation, and substrate adsorption, depending on the PCP type. Ethyl hexyl methoxycinnamate (EHMC) has strong biological oxidizability and was mainly removed by biodegradation, whereas Jiale musk (HHCB) and AHTN were mainly removed by adsorption. Six types of CW substrates were investigated, and perlite showed the best adsorption effect for the five target PCPs. The optimal substrate adsorption pH was 7. This study provides important technical information on the effective removal of conventional pollutants and PCPs in greywater and the preparation of high-quality reclaimed water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have