Abstract

Perfluoroalkyl acids (PFAAs) are emerging contaminants that pose significant environmental and health concerns. Water–sediment–macrophyte residue systems were established to clarify the removal efficiency of PFAAs, explore possible removal pathways, and profile the dynamic succession of biofilm microbial communities in the decomposition process. These systems were fortified with 12 PFAAs at three concentration levels. Iris pseudacorus and Alisma orientale were selected as the decomposing emergent macrophytes. The removal rates in the treatments with residues of I. pseudacorus (IP) and A. orientale (AO) were 34.4% to 88.9% and 36.5% to 89.9%, respectively, which were higher than those in the control groups (CG) (30.3% to 86.9%), suggesting that decomposition could alter the removal of PFAAs. Sediment made the greatest contributions (preloaded 14.5% to 77.8% of PFAAs in IP, 14.3% to 78.2% in AO, and 27.4% to 71.9% in CG). PFAAs could also be removed by macrophyte residue sorption (0.0190% to 13.0% in IP and 0.016% to 15.6% in AO) and bioaccumulation of residual biofilm (the contributions of biofilm microbes and their extracellular polymeric substances were 0.0110% to 3.93% and 0.918% to 34.4%, respectively, in IP and 0.0141% to 4.65% and 1.49% to 34.1%, respectively, in AO). Significant correlations were observed between sediment/residue adsorption and bioaccumulation of biofilm microbes, and were significantly correlated with perfluoroalkyl chain length (p < 0.05). The dynamic succession of residual biofilm microbial communities was investigated. The largest difference was found at the preliminary stage. The most similar communities were found in AO on day 70 (with specific genera Macellibacteroides and WCHB1-32) and in IP on day 35 (with specific genera Aeromonas and Flavobacterium). This study is useful to understand the removal of PFAAs during the decomposition process, providing further assistance in removing PFAAs during the life cycle of macrophytes in wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call