Abstract

In this paper, new adsorbents with high mechanical strength chitosan-graphene oxide (CS-GO) and chitosan-titanium dioxide (CS–TiO2) were synthesized by using glutaraldehyde as crosslinking agent, and the adsorption behavior of Pb (II) and V (V) on them were investigated. The materials were characterized by scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial metal ion concentration and contact time on the removal of V (V) and Pb (II) by CS-GO and CS-TiO2 were investigated. Characterization results showed that the hydroxyl group of GO/TiO2 reacted with the amino group of chitosan. A comparison of the kinetic models against experimental data showed that the kinetics react system was best described by the pseudo-second-order model. indicating that chemical adsorption was the main adsorption force. the Langmuir adsorption model and Freundlich model agreed well with the experimental data. The removal capacity of Pb (II) by CS-GO and CS-TiO2 were lower than those of V (V). The uncross-linked –OH and CO were the main adsorptive sites for Pb (II) removal, while uncross-linked –OH and –NH2 played an important role in removing V (V). These findings provided insights on the removing lead and vanadium pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.