Abstract

Analysis was carried out to determine the physicochemical characteristics – morphological and structural, electrokinetic properties, elemental composition and functional groups – of peat, with a view to its use as a potential adsorbent of heavy metal ions from aqueous solutions. A significant part of the study comprised tests of adsorption of nickel(II) and lead(II) ions from model solutions. It was determined how the parameters of the adsorption process (time, pH, quantity of sorbent) influence the effectiveness of removal of nickel(II) and lead(II) ions. The adsorption kinetics are also described, using a pseudo-first-order model and pseudo-second-order models of types 1–4. The results show strong correspondence to a pseudo-second-order kinetics model of type 1 (r2=0.999 for all initial concentrations). Another key part of the analysis was the use of the Langmuir and Freundlich models to determine the adsorption isotherms. The experimental data were in strong correspondence with Langmuir’s isotherm model. The sorption capacities of peat with respect to nickel(II) and lead(II) ions were 61.27mg(Ni2+)/g and 82.31mg(Pb2+)/g. Desorption tests confirmed the possibility of reusing peat as an effective sorbent of environmentally harmful metals. A mechanism is also proposed for the adsorption of Ni2+ and Pb2+ ions on adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call