Abstract
Natural organic matter (NOM) consists of a complex mixture of naturally occurring organic compounds. Although it is not considered toxic by itself, NOM present during water disinfection may result in the formation of disinfection by-products (DBPs), many of which are either carcinogenic or mutagenic. Although it is difficult to completely characterize NOM due to its complex and large structure, a consideration of its structure is necessary for a better understanding of the mechanism of NOM removal from water. In this study, water from the Vaalkop water treatment plant was characterized for its NOM composition by fractionation over ion-exchange resins. Fractionation at different pH with different resins resulted in the isolation of the neutral, basic and acidic fractions of both the hydrophobic and hydrophilic NOM. The hydrophilic basic fraction was found to be the most abundant fraction in the source water. Each of the isolated NOM fractions were percolated through cyclodextrin (CD) polyurethanes, resulting in an adsorption efficiency of between 6% and 33%. The acidic fractions were the most adsorbed fractions by the CD polyurethanes, while the neutral fractions being the least adsorbed. The water samples were then subjected to an ozonation regime at the treatment plant and then fractionated as before. As expected there were decreases of the neutral and basic fractions after ozonation. The application of CD polyurethanes to the fractions after ozonation resulted in a removal efficiency of up to 59%, nearly double that of the non-treated sample. Also, in the case of the ozone pre-treated samples, it was mainly the hydrophilic basic fraction which was removed. All the fractions were subjected to a chlorination test to determine the trihalomethane (THM) formation potential. All six NOM fractions resulted in THM formation, but the hydrophilic basic fraction was found to be the most reactive and formed the highest THM concentration. The effect of the combination of ozone and cyclodextrin polyurethane resulted in a relatively good capability to remove NOM from water as evidenced by an up overall 88% reduction of the hydrophilic acidic fraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have