Abstract

A hydroxyl-functionalized covalent organic framework aerogel COFTHB-TAPB-aerogel was designed and prepared as an adsorbent for the removal of multiple lipids from human plasma. The applications of 1,3,5-tris(4'-hydroxy-5'-formylphenyl)benzene (THB) and 1,3,5-tris(4-aminophenyl)benzene (TAPB) as monomers, DMSO/mesitylene (v/v, 4/1) as reaction solvent, and n-propylamine as reaction regulator endow COFTHB-TAPB-aerogel with good adsorption performance for multiple lipids. The morphology, phase purity, specific surface area, pore size, surface charge, and stability of COFTHB-TAPB-aerogel were characterized. Adsorption thermodynamics and adsorption kinetics studies showed that COFTHB-TAPB-aerogel had high equilibrium adsorption capacities (> 15913mgg-1) and fast adsorption equilibrium (≤ 10s) for the four model lipidstested. COFTHB-TAPB-aerogel had good reusability with the removal of the model lipids being still more than 91% after 10 use cycles. The sample pretreatment conditions and adsorbent amounts used in lipids removal experiments were optimized. Under the optimized conditions, the method of ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) using COFTHB-TAPB-aerogel as solid-phase extraction sorbent was validated with negligible matrix effects (0.4-3.0%) and good accuracy (86.7-110%) and was applied to determine 20 amino acids in human plasma samples from healthy individuals and gastric adenocarcinoma (GA) patients. The established method has beenproved to have good application potential for the removal of multiple lipids in human plasma to reduce the matrix effects and improve the accuracy of clinical LC-MS analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call