Abstract
The high concentration of salt in industrial wastewater has a strong inhibitory effect on the removal of pollutants by free radicals. A method has been developed to effectively remove micro organic pollutants in industrial high-salinity wastewater. This study investigated the combination of ferrate(VI) (FeVIO42–, Fe(VI)) and Fe(III) on the reduction of the pollutants in synthetic high-salinity wastewater, while focusing on the effects of major inorganic substances. Whether in synthetic wastewater with or without salinity, Fe(VI)-Fe(III) process exhibited higher pollutants removal rates than Fe(VI). Both chloride (increasing from (2.2 ± 0.1) × 10−2 min−1 to (1.1 ± 0.03) × 10−1 min−1) and bicarbonate (increasing from (2.2 ± 0.1) × 10−2 min−1 to (1.1 ± 0.02) × 10−1 min−1) significantly enhanced the removal of pollutants by the Fe(VI)-Fe(III) process. Chloride changed the ionic strength of Fe(VI), but Fe(III) strengthened the formation of Fe(V)/Fe(IV) from FeO42–, which offset the effect of the decrease of HFeO4–. Bicarbonate complexed Fe(V)/Fe(IV), these complexes enhanced the oxidizing ability of Fe(V)/Fe(IV). Based on the Program Kintecus, Fe(IV) was proposed as the main iron species in Fe(VI)-Fe(III) system, and its concentration was 2 to 3 orders of magnitude higher than Fe(V) at pH 9.0. The enhancement of Fe(VI)-Fe(III) system was observed in the oxidation of pollutant in real wastewater. Overall, the Fe(VI)-Fe(III) process is a new option for treating organic pollutants in industrial high salinity wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.