Abstract
The synthesis and growth behavior of the chemically modified ostrich bone wastes as bioadsorbents for the removal of methyl orange from aqueous solutions have been investigated. The ostrich bone wastes were treated with cetyltrimethylammonium bromide (CTABr) and sodium dodecyl benzene sulfonate (SDBS). The synthesized biomaterials were characterized by several physicochemical techniques. The modified ostrich bone with CTABr was found to be effective as adsorbent for the removal of methyl orange (MO) from aqueous solutions. The effect of the experimental conditions on the adsorption behavior was studied by varying the contact time, initial MO concentration, temperature, initial pH, chemical modification process, and amount of adsorbent. The contact time to attain equilibrium for maximum adsorption (90%) was found to be 50min. The adsorption kinetics of MO has been studied in terms of pseudo-first- and -second-order kinetics, and the Freundlich, Langmuir and Langmuir–Freundlich isotherm models have also been applied to the equilibrium adsorption data. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.