Abstract

ABSTRACT This work has been performed to synthesize a new dithiooxamide/glutaraldehyde resin (R-DTGA) polymer, and to determine the adsorption behavior as well as the adsorption kinetics of the reaction of the synthesized polymer towards the removal of mercury (II) ions from contaminated aqueous and industrial waste media. The synthesized resin polymer has been characterized by using the X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Fourier-Transform Infrared spectroscopy (FT-IR), the DTA, and the TGA measurements and techniques. The adsorption behavior of mercury ions and species was studied using the batch technique. The batch adsorption experiments were performed by using the synthesized polymer, and the effect of various parameters affecting the mercury (II) ions removal has been carefully investigated. The studied parameters are the solution pH, mercury ions concentration, and adsorption time. The obtained experimental results and data indicated the adsorption of mercury was maximum at the pH value (4.6). Also, it was found the adsorption of mercury ions onto the synthesized resin is best fitted by the Langmuir adsorption model, and the adsorption kinetics is best fitted by pseudo-second order kinetics model. The studied adsorbent polymer gave a superior maximum uptake (adsorption) capacity of 11 mmol/g. Based on the obtained results, the synthesized polymer provided extraordinary maximum capacity, selectivity, reusability, sensitivity, and fast adsorption kinetics to remove, extract, and recover mercury (II) ions from industrial, aqueous, and wastewater solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call