Abstract

ABSTRACT The leaching solution from the direct reduction-sodium smelting process of ultra-poor vanadium-bearing titanomagnetite contained sodium, vanadium, and impurities. It was carbonated to ensure sodium recovery, and the recovery of vanadium proved challenging. This study proposed and optimized a novel process of extracting vanadium from this alkaline carbonated solution using the transformed organic phase of 20 vol% (0.44 mol/L) Aliquat 336, 8 vol% 2-octanol, and 72 vol% sulfonated kerosene. To achieve superior vanadium extraction, Aliquat 336 in the organic phase was transformed into carbonate type by successively washing with NaHCO3 and NaOH solutions. The single-stage extraction efficiency of vanadium exceeded 85% at a pH of 8.0‒9.0 and an organic-to-aqueous phase ratio of 1:1. The thermodynamics of the vanadium extraction process was examined, confirming that the extraction process is an exothermic reaction (ΔH 0 = −9.56 kJ/mol). Furthermore, using a solution of 4 mol/L NH4Cl and 1 mol/L NH4OH with a pH of 8.8 as the effective stripping reagent to realize one-step stripping and precipitation of vanadium, the single-stage stripping efficiency of vanadium was 99.8%, and the precipitation efficiency was about 95%. Through this stripping-precipitation process, solid ammonium metavanadate with a purity of 98.14% was obtained in one step. The mechanisms of transformation, extraction, and stripping were studied via infrared spectra of the organic phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.