Abstract

Willow residue biochar (BC) and modified biochars (hydrochloric acid washing (HBC), HBC loaded with nanoscale zero-valent iron (nZVI-HBC), and HBC loaded with ferric iron (Fe3+-HBC)) after aging were used for aqueous Cr(VI) removal. HBC (>98.67%), nZVI-HBC (>98.86%), and Fe3+-HBC (>99.64%) kept high Cr(VI) removal rates under the acidic conditions within a wide pH range (<7.0), indicating their good adaptability to pH change because of aging. Cr(VI) reduction to Cr(III) was the dominant removal mechanism. The formation of COOH on BC, HBC, and nZVI-HBC indicates the oxidation of surface functional groups by Cr(VI) and simultaneous Cr(VI) reduction. The disappearance of nZVI peaks indicates the reduction of Cr(VI) to Cr(III) by nZVI. The color reaction result demonstrated that the converted Fe2+ in Fe3+-HBC contributed to Cr(VI) reduction. Taking into account the removal efficiency, recyclability, cost, preparation process, and stability of adsorbents, Fe3+-HBC was recommended for Cr(VI) removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.